初二数学知识点:汇总
来源:教务科研处 作者:里院里 发布时间 :2017-09-24 13:21:46阅读次数:【字体 |

 一次函数与正比例函数的图象与性质

 
一次函数 
 
概 念 如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k≠0)也叫正比例函数. 
 
图 像 一条直线
 
性 质 k>0时,y随x的增大(或减小)而增大(或减小);
 
k<0时,y随x的增大(或减小)而减小(或增大). 
 
直线y=kx+b(k≠0)的位置与k、b符号之间的关系. (1)k>0,b>0图像经过一、二、三象限;
 
(2)k>0,b<0图像经过一、三、四象限;
 
(3)k>0,b=0  图像经过一、三象限;
 
(4)k<0,b>0图像经过一、二、四象限;
 
(5)k<0,b<0图像经过二、三、四象限;
 
(6)k<0,b=0图像经过二、四象限。
 
一次函数表达式的确定 求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.
 
5.一次函数与二元一次方程组:
 
解方程组
 
从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值
 
解方程组 从“形”的角度看,确定两直线交点的坐标.
 
第十五章 整式乘除与因式分解
 
一.回顾知识点
 
1、主要知识回顾:
 
幂的运算性质:
am·an=am+n (m、n为正整数)
同底数幂相乘,底数不变,指数相加.
= amn (m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
= am-n (a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1 (a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=
(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:
(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
初二数学知识点汇总(二)
 
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式: a2-b2= (a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2




下一条:初一英语阅读理解:理解及答案
上一条:初一英语语法:大全汇总

关闭

版权所有:Copyright 2012-2013 临沧师范高等专科学校
学校地址:学府路2临沧师范高等专科学校 学校网址:http://www.lcnc.cn/
招办邮箱:mai1@lcnc.cn 招生咨询电话:0722--281533165 28009939 28592329(传真)